Share Email Print

Proceedings Paper

SONTRAC: an imaging spectrometer for solar neutrons
Author(s): James M. Ryan; Laurent Desorgher; Erwin O. Flueckiger; John R. Macri; Mark L. McConnell; Richard S. Miller
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

An instrument capable of unambiguously determining the energy and direction of incident neutrons has important applications in solar physics-as well as environmental monitoring and medical/radiological sciences. The SONTRAC (SOlar Neutron TRACking) instrument is designed to operate in the neutron energy range of 20-250 MeV. The measurement principle is based on non-relativistic double scatter of neutrons off ambient protons (n-p scattering) within a block of densely packed scintillating fibers. Using this double-scatter mode it is possible to uniquely determine neutron energy and direction on an event-by-event basis. A fully operational science model of such an instrument has been built using 300 μm (250 μm active) scintillating fibers. The science model consists of a 5×5×5 cm cube of orthogonal plastic scintillating fiber layers. Two orthogonal imaging chains, employing image intensifiers and CCD cameras, allow full 3-dimensional reconstruction of scattered proton particle tracks. We report the results of the science model instrument calibration using 35-65 MeV protons. The proton calibration is the first step toward understanding the instrument response to n-p scatter events. Preliminary results give proton energy resolution of 2% (6%) at 67.5 (35) MeV, and angular resolution of 2° (4.5°) at 67.5 (35) MeV. These measurements are being used to validate detailed instrument simulations that will be used to optimize the instrument design and develop quantitative estimates of science return. Based on the proton calibration, neutron energy and angular resolution for a 10×10×10 cm version of SONTRAC is expected to be ~5% and <10°, respectively, while the efficiency of the detector to double n-p scatter events is approximately 1%. We will also discuss ongoing opto-electronic developmental efforts and concepts for extending the instrument response to lower energies.

Paper Details

Date Published: 11 February 2003
PDF: 12 pages
Proc. SPIE 4853, Innovative Telescopes and Instrumentation for Solar Astrophysics, (11 February 2003); doi: 10.1117/12.460368
Show Author Affiliations
James M. Ryan, Univ. of New Hampshire (United States)
Laurent Desorgher, Univ. Bern (Switzerland)
Erwin O. Flueckiger, Univ. Bern (Switzerland)
John R. Macri, Univ. of New Hampshire (United States)
Mark L. McConnell, Univ. of New Hampshire (United States)
Richard S. Miller, Univ. of New Hampshire (United States)

Published in SPIE Proceedings Vol. 4853:
Innovative Telescopes and Instrumentation for Solar Astrophysics
Stephen L. Keil; Sergey V. Avakyan, Editor(s)

© SPIE. Terms of Use
Back to Top