Share Email Print
cover

Proceedings Paper

Multiagent data warehousing and multiagent data mining for cerebrum/cerebellum modeling
Author(s): Wen-Ran Zhang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

An algorithm named Neighbor-Miner is outlined for multiagent data warehousing and multiagent data mining. The algorithm is defined in an evolving dynamic environment with autonomous or semiautonomous agents. Instead of mining frequent itemsets from customer transactions, the new algorithm discovers new agents and mining agent associations in first-order logic from agent attributes and actions. While the Apriori algorithm uses frequency as a priory threshold, the new algorithm uses agent similarity as priory knowledge. The concept of agent similarity leads to the notions of agent cuboid, orthogonal multiagent data warehousing (MADWH), and multiagent data mining (MADM). Based on agent similarities and action similarities, Neighbor-Miner is proposed and illustrated in a MADWH/MADM approach to cerebrum/cerebellum modeling. It is shown that (1) semiautonomous neurofuzzy agents can be identified for uniped locomotion and gymnastic training based on attribute relevance analysis; (2) new agents can be discovered and agent cuboids can be dynamically constructed in an orthogonal MADWH, which resembles an evolving cerebrum/cerebellum system; and (3) dynamic motion laws can be discovered as association rules in first order logic. Although examples in legged robot gymnastics are used to illustrate the basic ideas, the new approach is generally suitable for a broad category of data mining tasks where knowledge can be discovered collectively by a set of agents from a geographically or geometrically distributed but relevant environment, especially in scientific and engineering data environments.

Paper Details

Date Published: 12 March 2002
PDF: 11 pages
Proc. SPIE 4730, Data Mining and Knowledge Discovery: Theory, Tools, and Technology IV, (12 March 2002); doi: 10.1117/12.460236
Show Author Affiliations
Wen-Ran Zhang, Georgia Southern Univ. (United States)


Published in SPIE Proceedings Vol. 4730:
Data Mining and Knowledge Discovery: Theory, Tools, and Technology IV
Belur V. Dasarathy, Editor(s)

© SPIE. Terms of Use
Back to Top