Share Email Print
cover

Proceedings Paper

New techniques for the next far-ultraviolet spectroscopic mission
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The Far Ultraviolet Spectroscopic Explorer (FUSE) has been a great success, and has addressed many critical scientific questions (Moos, et al, 2000). However, it has also highlighted the need for even more powerful instrumentation in the 900-1200 Å regime. In particular, significantly increased effective area will permit the pursuit of additional scientific programs currently impractical or impossible with FUSE. It is unlikely that FUSE will last more than a few more years. Nor is it likely that any large scale UV-optical follow-on to HST (such as SUVO) will include the 900-1200 Å bandpass. However, FUSE remains well oversubscribed and continues to perform excellent science. Therefore, a MIDEX class mission in the next 4-6 years that could significantly improve on the FUSE capabilities would be a powerful scientific tool that would be of great utility to the astronomical community. It would open up new scientific programs if it can improve on the sensitivity of FUSE by an order of magnitude. We have identified a powerful technique for efficient, high-resolution spectroscopy in the FUV (and possibly the EUV) that may provide exactly what is needed for such a mission. To achieve a factor of 10 improvement in effective area, we propose using a large (meter class), low-cost, grazing incidence metal optics. This would produced in a manner similar to the EUVE mirrors (Green, et al, 1986), using diamond turning to create the optical figure followed by uncontrolled polishing to achieve a high quality surface. This process will introduce significant figure errors that will degrade the image quality. However, if a holographic grating is employed, which has utilized the actual telescope in the recording geometry, all wavefront errors will be automatically corrected in the end-to-end spectrometer, and high quality spectroscopy will be possible with low quality (and low-cost) optics. In this way a MIDEX class FUSE can be proposed with 10 times the effective area of the current instrument.

Paper Details

Date Published: 24 February 2003
PDF: 5 pages
Proc. SPIE 4854, Future EUV/UV and Visible Space Astrophysics Missions and Instrumentation, (24 February 2003); doi: 10.1117/12.459812
Show Author Affiliations
James C. Green, Ctr. for Astrophysics and Space Astronomy, Univ. of Colorado/Boulder (United States)
Erik Wilkinson, Ctr. for Astrophysics and Space Astronomy, Univ. of Colorado/Boulder (United States)


Published in SPIE Proceedings Vol. 4854:
Future EUV/UV and Visible Space Astrophysics Missions and Instrumentation
J. Chris Blades; Oswald H. W. Siegmund, Editor(s)

© SPIE. Terms of Use
Back to Top