Share Email Print
cover

Proceedings Paper

Layer-oriented multigrid wavefront reconstruction algorithms for multiconjugate adaptive optics
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Multi-conjugate adaptive optics (MCAO) systems with 104-105 degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of AO degrees of freedom. In this paper, we develop an iterative sparse matrix implementation of minimum variance wavefront reconstruction for telescope diameters up to 32m with more than 104 actuators. The basic approach is the preconditioned conjugate gradient method, using a multigrid preconditioner incorporating a layer-oriented (block) symmetric Gauss-Seidel iterative smoothing operator. We present open-loop numerical simulation results to illustrate algorithm convergence.

Paper Details

Date Published: 7 February 2003
PDF: 12 pages
Proc. SPIE 4839, Adaptive Optical System Technologies II, (7 February 2003); doi: 10.1117/12.459347
Show Author Affiliations
Luc Gilles, Michigan Technological Univ. (United States)
Brent L. Ellerbroek, Gemini Observatory (United States)
Curtis R. Vogel, Montana State Univ. (United States)


Published in SPIE Proceedings Vol. 4839:
Adaptive Optical System Technologies II
Peter L. Wizinowich; Domenico Bonaccini, Editor(s)

© SPIE. Terms of Use
Back to Top