Share Email Print

Proceedings Paper

Low readout noise CCDs in optical interferometry
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Most current CCDs cannot be used as optical interferometric sensors because the high readout noise disguises the small signal. However, new low light level charge coupled devices (L3CCD) have a large on-chip gain which can allow a signal to be detected above the noisy readout amplifier. This gain has a statistical nature, meaning that the photon input cannot be predicted exactly. We investigate several techniques for photon prediction at different light levels, and demonstrate how this affects the noise on the signal. Accurate signal estimation can be achieved with very faint signals, up to about one photon per pixel per read. Above this, accuracy gradually decreases, though our signal-to-noise ratio is never worse than square root(2n). Optical interferometry requires detection of very faint signals, and the use of an L3CCD is found to allow reproduction of interferometric visibilities to high precision. Custom instrumentation used for control is also detailed.

Paper Details

Date Published: 21 February 2003
PDF: 8 pages
Proc. SPIE 4838, Interferometry for Optical Astronomy II, (21 February 2003); doi: 10.1117/12.459328
Show Author Affiliations
Alastair G. Basden, Cavendish Lab./Univ. of Cambridge (United Kingdom)
David F. Buscher, Cavendish Lab./Univ. of Cambridge (United Kingdom)
Christopher A. Haniff, Cavendish Lab./Univ. of Cambridge (United Kingdom)
Craig D. Mackay, Institute of Astronomy/Univ. of Cambridge (United Kingdom)

Published in SPIE Proceedings Vol. 4838:
Interferometry for Optical Astronomy II
Wesley A. Traub, Editor(s)

© SPIE. Terms of Use
Back to Top