Share Email Print
cover

Proceedings Paper

Contour-based progressive coding of cutting plane data
Author(s): Yanlin Guan; Robert J. Moorhead
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We present an efficient algorithm for progressive coding of cutting plane data extracted from large-scale computational field simulation (CFS) datasets. Since cutting planes are frequently used for examination of 3D simulation results, efficient compression of their geometry, topography, and the associated field data is important for good visualization performance, especially when the simulation is running on a geographically remote server or the simulation results are stored in a remote repository. Progressive coding is ideal for exploratory visualization since the data can be presented naturally starting with a coarse view and progressing down to the detail. In our algorithm, each cutting plane is reduced at the server to a set of triangle strips containing contour lines. On the local visualization machine (the client), the original surface is reconstructed by triangulating the space between the triangle strips. The more contour lines used, the higher the reconstruction accuracy obtained. It can quickly show an area of interest without modifying that section of the original triangle mesh. In generating the data to be sent to the client, the algorithm can smoothly trade-off computation and the accuracy of the representation by altering the cutting plane generation procedure or by adjusting the accuracy of the data.

Paper Details

Date Published: 12 March 2002
PDF: 9 pages
Proc. SPIE 4665, Visualization and Data Analysis 2002, (12 March 2002); doi: 10.1117/12.458779
Show Author Affiliations
Yanlin Guan, Mississippi State Univ. (United States)
Robert J. Moorhead, Mississippi State Univ. (United States)


Published in SPIE Proceedings Vol. 4665:
Visualization and Data Analysis 2002
Robert F. Erbacher; Philip C. Chen; Matti Groehn; Jonathan C. Roberts; Craig M. Wittenbrink, Editor(s)

© SPIE. Terms of Use
Back to Top