Share Email Print

Proceedings Paper

Genetic routing algorithms to optimize availability in broadband wireless networks with load balancing
Author(s): William S. Hortos
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Packet-switched networks using the Internet Protocol (IP) provide multimedia services through broadband wireless access to mobile and fixed subscribers from an IP core network via bi-directional paths consisting of a hierarchy of high-speed routers, switches, and servers. Packets are aggregated at the nodes that form the ordered links of end- to-end paths between subscriber and gateway. Network resources are allocated at nodes to meet quality of service (QoS) requirements of new and existing calls. If sufficient resources are not available to satisfy a call's QoS, the call is blocked or dropped, reducing network uptime or availability. Packet flows are shared among redundant devices, clustered at nodes, to reduce blocking and dropping and speed failure recovery. A two-stage genetic algorithm (GA) is proposed to assign resources to feasible paths to provide calls the best possible resource utilization, availability, and QoS levels, while balancing traffic among devices at nodes. The GA operates on a population of integer-valued vectors of call ID, QoS requirements, and end-to-end paths encoded as node-device pairs. Selection, crossover, and mutation are defined for the GA. At call arrivals and departures, the GA limits the number of candidate paths based on their fitness to provide QoS, path availability, resource utilization, and load balance. Simulation results are discussed for different scenarios.

Paper Details

Date Published: 11 March 2002
PDF: 19 pages
Proc. SPIE 4739, Applications and Science of Computational Intelligence V, (11 March 2002); doi: 10.1117/12.458711
Show Author Affiliations
William S. Hortos, Florida Institute of Technology (United States)

Published in SPIE Proceedings Vol. 4739:
Applications and Science of Computational Intelligence V
Kevin L. Priddy; Paul E. Keller; Peter J. Angeline, Editor(s)

© SPIE. Terms of Use
Back to Top