Share Email Print
cover

Proceedings Paper

Quantitative evaluation of focused ion-beam repair for quartz bump defect of alternating phase-shift masks
Author(s): Daichi Kakuta; Ichiro Kagami; Tooru Komizo; Hidetoshi Ohnuma
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

An alternating phase shift mask technique is one of the candidates to extend the KrF excimer laser lithography generation. One of the issues for practical fabrication of Alt-PSMs is a repair of quartz bump defects. A conventional focused-ion beam (FIB) repair technique has been investigated for quartz bump defect etching using (beta) -gas which has been introduced as a gas assist etching gas for MoSi based att-PSMs. We have prepared dual trench type alt- PSMs, which have programmed defects with various heights and sizes. Inspection and printability results are presented using these programmed defects masks. First, visibility of defects on a repair system is confirmed because the FIB repair system uses secondary Si ion for pattern imaging. Secondly, we have optimized parameters for quartz etching rate control with evaluation for etching depth accuracy and depth of riverbed. Thirdly, transmittance and printability of repaired point are confirmed with AIMS and wafer exposure experiments. This paper discusses feasibility of FIB repair of alt-PSMs in terms of limitation of small quartz bump defect visibility, quartz etching rate repeatability and printability of repaired points.

Paper Details

Date Published: 11 March 2002
PDF: 9 pages
Proc. SPIE 4562, 21st Annual BACUS Symposium on Photomask Technology, (11 March 2002); doi: 10.1117/12.458358
Show Author Affiliations
Daichi Kakuta, Sony Electronics, Inc. (Japan)
Ichiro Kagami, Sony Electronics, Inc. (Japan)
Tooru Komizo, Sony Electronics, Inc. (Japan)
Hidetoshi Ohnuma, Sony Electronics, Inc. (Japan)


Published in SPIE Proceedings Vol. 4562:
21st Annual BACUS Symposium on Photomask Technology
Giang T. Dao; Brian J. Grenon, Editor(s)

© SPIE. Terms of Use
Back to Top