Share Email Print
cover

Proceedings Paper

CARs blanks feasibility study results for the advanced EB reticle fabrication (IV)
Author(s): Masahiro Hashimoto; Fumiko Ota; Yasunori Yokoya; Hideo Kobayashi
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In order to provide a platform for the industry, we have been working on positive-working CAR screening by joint-works with resist-makers. In this paper, firstly, we did validation of a technique 'dark erosion analysis by excess develop' on our latest benchmark CAR C-2, to re-introduce our baking optimization technique to all the blanks users. The baking condition described by the technique (the sweet spot) certainly provided us a superior pattern profile, a longer blanks life, and better sensitivity stability for PEB time. To find a CAR that exceeds C-2 performance, we continued CAR screening. A CAR with 'less-footing' and 'high-sensitivity' was found, however, it had still a difficulty of terrible 'spray-damages' due to insufficient remaining thickness after develop. Desiccant (silica-gel) worked significantly to extend CAR blanks life, however, we found that it was not available for practical use unfortunately due to excess particle contamination during shipment. As a technique to solve 'spray-develop damage' issue, it was certainly effective to form a protection layer, and aqueous TAR over-coating layer could be an option to prevent resists film from the spray-damages. Finally, we reported negative-working CARs screening results. And some negative CARs were superior to the most popular one today for sensitivity or pattern profile, however, they had a difficulty of excess-undercut.

Paper Details

Date Published: 11 March 2002
PDF: 12 pages
Proc. SPIE 4562, 21st Annual BACUS Symposium on Photomask Technology, (11 March 2002); doi: 10.1117/12.458350
Show Author Affiliations
Masahiro Hashimoto, HOYA Corp. (Japan)
Fumiko Ota, HOYA Corp. (Japan)
Yasunori Yokoya, HOYA Corp. (Japan)
Hideo Kobayashi, HOYA Corp. (Japan)


Published in SPIE Proceedings Vol. 4562:
21st Annual BACUS Symposium on Photomask Technology
Giang T. Dao; Brian J. Grenon, Editor(s)

© SPIE. Terms of Use
Back to Top