Share Email Print
cover

Proceedings Paper

One step forward to maturity of AF (assistant feature)-OPC in 100-nm level DRAM application
Author(s): Hyunjae Kang; Byeongsoo Kim; Joonsoo Park; Insung Kim; Gisung Yeo; Junghyun Lee; Hanku Cho; Joo-Tae Moon
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

For 100nm-level patterning using optical lithography, high NA system and various RETs such as PSM, off-axis illumination and OPC are obviously required. In particular, assistant feature (AF)-OPC is indispensable to overcome narrow depth of focus (DOF) caused by iso-dense bias and to compensate for linearity difference under the given OAI condition. Previously we reported the application of AF-OPC in DRAM process with 120nm design rule. The extraction of OPC rule and the feasibility of AF-OPC were successfully confirmed by experimental method in real process. In this paper, more comprehensive and aggressive AF-OPC rule is investigated. The old rule is modified in order to obtain larger common DOF. TO avoid dead zone that means discontinuity between dense line and semi-dense line, we apply a comprehensive rule such as insertion of AF between the neighboring main patterns as many as possible. As a result, the discontinuity of OPC application, which is used with or without AF in the boundary region, is effectively minimized. Also, polygon-shaped AF is used to improve DOF of special main pattern. And then, the mask specification and the behavior of isolated line pattern are predicted in case of very high NA KrF and ArF lithography by simulation result. Considering 100nm design rule, the decrease of common DOF is expected to be severer than now. Finally, the optimum AF-OPC rules such as AF size, space and shape are available and shown in case of very high NA KrF and ArF lithography.

Paper Details

Date Published: 11 March 2002
PDF: 8 pages
Proc. SPIE 4562, 21st Annual BACUS Symposium on Photomask Technology, (11 March 2002); doi: 10.1117/12.458274
Show Author Affiliations
Hyunjae Kang, Samsung Electronics Co., Ltd. (South Korea)
Byeongsoo Kim, Samsung Electronics Co., Ltd. (South Korea)
Joonsoo Park, Samsung Electronics Co., Ltd. (South Korea)
Insung Kim, Samsung Electronics Co., Ltd. (South Korea)
Gisung Yeo, Samsung Electronics Co., Ltd. (South Korea)
Junghyun Lee, Samsung Electronics Co., Ltd. (South Korea)
Hanku Cho, Samsung Electronics Co., Ltd. (South Korea)
Joo-Tae Moon, Samsung Electronics Co., Ltd. (South Korea)


Published in SPIE Proceedings Vol. 4562:
21st Annual BACUS Symposium on Photomask Technology
Giang T. Dao; Brian J. Grenon, Editor(s)

© SPIE. Terms of Use
Back to Top