Share Email Print

Proceedings Paper

Mask-related distortions of modified fused silica reticles for 157-nm lithography
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Extending 157-nm lithography to the 70 nm node will be a difficult challenge due to the stringent requirements on image placement accuracy. At the University of Wisconsin Computational Mechanics Center, numerical and experimental studies are being conducted to investigate materials, fabrication processing, and system parameters necessary to achieve the required overlay error budget. This paper provides our latest results for 157-nm reticles, including the photomask / pellicle system. Mask blank fabrication and pattern transfer effects were simulated utilizing three-dimensional finite element (FE) structural models. The pattern-specific in-plane distortions (IPD) induced by each fabrication process step have been determined using the IBM Nighteagle / Falcon layout. To complete the static structural analysis, the effects of bonding a pellicle were also identified. The thermomechanical response of reticles during e-beam patterning and exposure were evaluated utilizing FE heat transfer models. Results from e-beam writing simulations indicate that transient thermal distortions from patterning the Nighteagle / Falcon design are not critical. However, under high throughput conditions, the IPD induced during scanning exposure can become relatively large. The simulation results provide an indication of the total overlay error budget to be expected, and demonstrate the importance of using predictive models to optimize mask system performance in a cost-effective manner.

Paper Details

Date Published: 11 March 2002
PDF: 12 pages
Proc. SPIE 4562, 21st Annual BACUS Symposium on Photomask Technology, (11 March 2002); doi: 10.1117/12.458256
Show Author Affiliations
Andrew R. Mikkelson, Univ. of Wisconsin/Madison (United States)
Amr Y. Abdo, Univ. of Wisconsin/Madison (United States)
Eric P. Cotte, Univ. of Wisconsin/Madison (United States)
Jaewoong Sohn, Univ. of Wisconsin/Madison (United States)
Roxann L. Engelstad, Univ. of Wisconsin/Madison (United States)
Edward G. Lovell, Univ. of Wisconsin/Madison (United States)

Published in SPIE Proceedings Vol. 4562:
21st Annual BACUS Symposium on Photomask Technology
Giang T. Dao; Brian J. Grenon, Editor(s)

© SPIE. Terms of Use
Back to Top