Share Email Print
cover

Proceedings Paper

(119) Bi-2223 thin films grown by MOCVD on (100) NdGaO3 and (110) SrTiO3
Author(s): Kazuhiro Endo; P. Badica
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In high temperature superconductors (HTS) the coherence length along non-c axis directions is longer. This feature can be useful wh en designing electronics devices based on HTS. Therefore growth and characterization of non-c axis oriented thin HTS films is of great interest. In this paper we present a short review of our data regarding (119) Bi-2223 thin films grown by MOCVD on (100) NdGaO3 and (110) SrTiO3. The emphasis is made on improvement and control of the quality of the films by the "two-temperature" technological approach and/or use of the vicinal substrates. Phase and morphology evolution for different processing conditions, substrate's type and off-angle are presented. The highest critical temperatures of Tc0=67.2 K and Tc0=74 K for the "single" and "two-"temperature routes were obtained on vicinal SrTiO3 with the off-angle of 20°. A higher off-angle promoted the formation of a specific step-like morphology with lower roughness. For the films grown on flat substrates the morphology was of mountain-range shape. Surface morphology as a result of two types of growth mechanisms (two-dimensional (2D), assisted by a so-called "twin"-growth and step-flow growth) for the (119)Bi-2223 filmes are discussed.

Paper Details

Date Published: 7 November 2002
PDF: 10 pages
Proc. SPIE 4811, Superconducting and Related Oxides: Physics and Nanoengineering V, (7 November 2002); doi: 10.1117/12.457698
Show Author Affiliations
Kazuhiro Endo, National Institute of Advanced Industrial Science and Technology (Japan)
P. Badica, National Institute of Advanced Industrial Science and Technology (Japan)
National Institute for Materials Physics (Romania)


Published in SPIE Proceedings Vol. 4811:
Superconducting and Related Oxides: Physics and Nanoengineering V
Ivan Bozovic; Davor Pavuna, Editor(s)

© SPIE. Terms of Use
Back to Top