Share Email Print

Proceedings Paper

Sensor system for comet approach and landing
Author(s): Roberto Bonsignori; Luca Maresi
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper describes the overall configuration and performance of a comet approach and landing system (CALS), a space-borne sensor package for navigation toward a low-gravity celestial body in an interplanetary environment. The sensor system is aimed at satisfying the requirements of the Rosetta/CNSR (comet nucleus sample return) mission, whose objective is to land on a cometary surface and to retrieve samples that will be analyzed on the ground after Earth re-entry. Several constraints at the mission and spacecraft level make the configuration of a suitable sensor package a quite complex problem. The baseline system includes the following sensors, all mounted on a high-precision gimballed platform: (1) high-resolution camera, for detection of the comet at large distance and mapping at medium/short distance for ground-assisted landing site selection; (2) wide-angle camera with data processing equipment (star and target tracker), able to track simultaneously the irregular comet image and the surrounding stars for autonomous navigation; (3) laser topographic mapper for autonomous topography-assisted navigation in the final descent phase; (4) multitask radar altimeter for the on-board measurement of range, attitude, 3-axis velocity and surface roughness, with a microwave sounder section for the determination of subsurface structure and composition.

Paper Details

Date Published: 1 July 1991
PDF: 16 pages
Proc. SPIE 1478, Sensors and Sensor Systems for Guidance and Navigation, (1 July 1991); doi: 10.1117/12.45624
Show Author Affiliations
Roberto Bonsignori, Officine Galileo SpA (Italy)
Luca Maresi, Officine Galileo SpA (Italy)

Published in SPIE Proceedings Vol. 1478:
Sensors and Sensor Systems for Guidance and Navigation
Jack F. Wade; Avi Tuchman, Editor(s)

© SPIE. Terms of Use
Back to Top