Share Email Print
cover

Proceedings Paper

Development of a novel spectroscopic methodology for the unique determination of bacterial spores
Author(s): Troy A. Alexander
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A novel methodology has been developed for the determination (i.e., identification and quantification) of bacterial spores that may be useful in many applications; most notably, development of detection schemes toward potentially harmful biological agents such as Bacillus anthracis. In addition, this method would be useful as an environment warning system where sterility is of importance (i.e., food preparation areas as w ell as invasive and minimally- invasive medical applications). This method is based on the infrared (1500 to 4000-nm) absorption of fatty acids and peptides extracted from the spore. The absorption spectra of several bacteria spore extracts in carbon disulfide solution have been measured. Further, the groups of absorption bands in the this region are unique for each spore, which implies it may be possible to use this technique for their determination. The Bacillus spores studied were chosen because they are taxonomically close to each other as well as to Bacillus antracis. Expectedly, the measured absorption bands are heavily overlapped since the extracted analytes are similar in structure for each Bacillus spore. Additionally, this makes it impossible to use a single wavelength for the determination of any bacterial spore species. However, it may be possible to use the infrared absorption technique in conjunction with the Partial Least Squares (PLS) regression method to develop statistical models for the determination of bacterial spores. Results will be presented concerning sampling, data treatment, and development of PLS models as well as application of these models in the determination of unknown Bacillus bacterial spores.

Paper Details

Date Published: 7 February 2002
PDF: 8 pages
Proc. SPIE 4574, Instrumentation for Air Pollution and Global Atmospheric Monitoring, (7 February 2002); doi: 10.1117/12.455147
Show Author Affiliations
Troy A. Alexander, Army Research Lab. (United States)


Published in SPIE Proceedings Vol. 4574:
Instrumentation for Air Pollution and Global Atmospheric Monitoring
James O. Jensen; Robert L. Spellicy, Editor(s)

© SPIE. Terms of Use
Back to Top