Share Email Print
cover

Proceedings Paper

Adaptive aberration correction based on an opto-electronic Zernike wavefront sensor and the decoupled stochastic parallel gradient descent control technique
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We present performance results from an experimental adaptive system based on a recently proposed adaptive optics control technique -- the decoupled stochastic parallel gradient descent (D-SPGD) optimization technique. The system consists of an opto-electronic Zernike wave front sensor implemented with a 128x128 element LC phase modulator from Boulder Nonlinear Systems and a 127 element LC phase modulator from Meadowlark Optics used as a wave front corrector. Results demonstrate that adaptive wave front correction using the D-SPGD optimization technique can provide efficient compensation of phase distortions.

Paper Details

Date Published: 1 February 2002
PDF: 8 pages
Proc. SPIE 4493, High-Resolution Wavefront Control: Methods, Devices, and Applications III, (1 February 2002); doi: 10.1117/12.454709
Show Author Affiliations
Gary W. Carhart, Army Research Lab. (United States)
Mikhail A. Vorontsov, Army Research Lab. (United States)


Published in SPIE Proceedings Vol. 4493:
High-Resolution Wavefront Control: Methods, Devices, and Applications III
John D. Gonglewski; Mikhail A. Vorontsov; Mark T. Gruneisen, Editor(s)

© SPIE. Terms of Use
Back to Top