Share Email Print

Proceedings Paper

Geo-fit approach to the analysis of limb-scanning satellite measurements
Author(s): Marco Ridolfi; Massimo Carlotti; Bianca Maria Dinelli; Luca Magnani; Piera Raspollini
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Retrieval methods for limb-scanning measurements usually adopt the assumption of horizontal homogeneity for the parcel of atmosphere sounded by the analyzed observations. For along-track observations from an orbiting platform, the dimension of the probed parcel of atmosphere may approach 2000 km. Horizontal homogeneity assumption in the inversion algorithms induces an error on the retrieved atmospheric parameters. Two questions arise from these considerations: 1) how to characterize these errors, 2) how to avoid this assumption if the size of the induced errors is not acceptable. In order to answer these questions, an innovative forward and retrieval model (geo-fit) was developed which does not use horizontal homogeneity assumption. In this approach the radiative transfer is made through a two-dimensional inhomogeneous atmospheric field. The retrieval algorithm is based on the simultaneous analysis of all the limb-scanning measurements relating to a given orbit. This feature allows to gather information from several contiguous limb-scanning sequences on a target atmospheric parameter at a given location, and therefore to improve the trade-off between accuracy and horizontal resolution. The obtained results show that the horizontal homogeneity assumption induces a significant systematic error on the retrieved atmospheric parameters, especially in the presence of strong horizontal gradients.

Paper Details

Date Published: 31 January 2002
PDF: 12 pages
Proc. SPIE 4539, Remote Sensing of Clouds and the Atmosphere VI, (31 January 2002); doi: 10.1117/12.454452
Show Author Affiliations
Marco Ridolfi, Univ. degli Studi di Bologna (Italy)
Massimo Carlotti, Univ. degli Studi di Bologna (Italy)
Bianca Maria Dinelli, Istituto Struttura della Materia/CNR (Italy)
Luca Magnani, Univ. degli Studi di Bologna (Italy)
Piera Raspollini, Istituto di Ricerca sulle Onde Elettromagnetiche/CNR (Italy)

Published in SPIE Proceedings Vol. 4539:
Remote Sensing of Clouds and the Atmosphere VI
Klaus Schaefer; Olga Lado-Bordowsky; Adolfo Comeron; Michel R. Carleer; Janet S. Fender, Editor(s)

© SPIE. Terms of Use
Back to Top