Share Email Print
cover

Proceedings Paper

Feasibility of retrieving upper tropospheric water vapor from observations of far-infrared radiation
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Since the early 1970's, infrared remote sensing of water vapor has been based exclusively on observations of mid-infrared (mid-ir) emission from the strong 6.3 micrometers vibration-rotation band. However, the outgoing longwave radiation from Earth is dominated by emission in the far-infrared (far-ir) at wavelengths greater than 15 micrometers . The source of this far-ir radiation is upper tropospheric water vapor. Furthermore, there are a growing number of novel instrument concepts that propose measuring the thermal far-ir spectrum for the purpose of radiation budget sensing and climate fingerprinting. As a result, we investigate the feasibility of retrieving upper tropospheric water vapor from nadir-viewing observations of far-ir spectral emission. We find that it is possible to retrieve upper tropospheric water vapor from measurements of the far-ir spectral radiation, and that the vertical resolution can be significantly improved by combining measurements from the far-ir and mid-ir spectrum.

Paper Details

Date Published: 30 January 2002
PDF: 11 pages
Proc. SPIE 4485, Optical Spectroscopic Techniques, Remote Sensing, and Instrumentation for Atmospheric and Space Research IV, (30 January 2002); doi: 10.1117/12.454251
Show Author Affiliations
Christopher J. Mertens, NASA Langley Research Ctr. (United States)


Published in SPIE Proceedings Vol. 4485:
Optical Spectroscopic Techniques, Remote Sensing, and Instrumentation for Atmospheric and Space Research IV
Allen M. Larar; Martin G. Mlynczak, Editor(s)

© SPIE. Terms of Use
Back to Top