Share Email Print

Proceedings Paper

Exploring anisotropy in removal rate for single crystal sapphire using MRF
Author(s): Irina A. Kozhinova; Steven R. Arrasmith; John C. Lambropoulos; Stephen D. Jacobs; Henry J. Romanofsky
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Magnetorheological (MR) fluids with two types of abrasives (diamond and alumina/spinel) were used to study anisotropy in removal rate for C-cut single crystal sapphire. Interferometrically flat, basal plates (0001) employed in the experiments were characterized by different degree of C- axis (small) tilt from normal. The removal rate anisotropy depends on the type of abrasive, with anisotropy being more pronounced for the alumina/spinel abrasive. The anisotropy exhibited 2-fold symmetry, with the C-axis lying in the plane of symmetry. Roughness was found to depend on the basal plate orientation and the type of abrasive used. Diamonds improved the initial surface roughness of a polished plate regardless of orientation, while alumina/spinel abrasives increased the roughness, especially in the down-the-steps direction of fluid flow with respect to basal plane inclination. The results of this polishing experiment are in agreement with earlier studies of anisotropy observed in wear experiments on spherical surfaces of single crystal sapphire along different crystallographic orientations.

Paper Details

Date Published: 27 December 2001
PDF: 9 pages
Proc. SPIE 4451, Optical Manufacturing and Testing IV, (27 December 2001); doi: 10.1117/12.453626
Show Author Affiliations
Irina A. Kozhinova, Univ. of Rochester (United States)
Steven R. Arrasmith, Univ. of Rochester (United States)
John C. Lambropoulos, Univ. of Rochester (United States)
Stephen D. Jacobs, Univ. of Rochester (United States)
Henry J. Romanofsky, Byelocorp Scientific, Inc. (United States)

Published in SPIE Proceedings Vol. 4451:
Optical Manufacturing and Testing IV
H. Philip Stahl, Editor(s)

© SPIE. Terms of Use
Back to Top