Share Email Print

Proceedings Paper

Demonstration of a 0.5-m ultralightweight mirror for use at geosynchronous orbit
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Future space telescopes will require apertures that are larger than the current state of the art, yet fit within the exiting launch restrictions on size and mass. The mass can be reduced by using a thin flexible substrate for the optical surface and a rigid, lightweight frame with actuators for support. The accuracy of the optical surface is actively maintained by adjusting the actuators using feedback from wavefront measurements. We have designed, built and tested a 0.5-m demonstration mirror for use in geosynchronous Earth-imaging systems. The mirror has an areal density of 5 kg/m2 and is the lightest mirror we have made using the thin substrate design. This paper discusses the design, fabrication and performance of the 0.5-m mirror.

Paper Details

Date Published: 27 December 2001
PDF: 10 pages
Proc. SPIE 4451, Optical Manufacturing and Testing IV, (27 December 2001); doi: 10.1117/12.453605
Show Author Affiliations
Dave Baiocchi, Optical Sciences Ctr./Univ. of Arizona (United States)
James H. Burge, Optical Sciences Ctr./Univ. of Arizona and Steward Observatory/Univ. of Arizona (United States)
Brian Cuerden, Steward Observatory/Univ. of Arizona (United States)

Published in SPIE Proceedings Vol. 4451:
Optical Manufacturing and Testing IV
H. Philip Stahl, Editor(s)

© SPIE. Terms of Use
Back to Top