Share Email Print
cover

Proceedings Paper

Rate control for fully fine-grained scalable video coders
Author(s): Josep Prades-Nebot; Gregory W. Cook; Edward J. Delp
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In this paper we study two rate control strategies for fully fine-grained scalable (FFGS) video coders. Usually, in scalable coders the bitstream is divided into a base layer, which is decoded by all the decoders, and one or more enhancement layers which can improve the quality provided by the base layer. In Internet video streaming it is important that the bitstream be scalable in rate, which allows a server to adapt the bitstream to changes in the available bandwidth in the network. FFGS coders allow the maximum degree of rate scalability by using scalable encoding in both the base and enhancement layers. In this paper, we propose a rate control algorithm which is based on the rate distortion characteristics of the encoded bitstream and prevents large jumps in quality. We show that due to the embedding property of FFGS encoders, we can properly select the number of bits of every layer and frame by taking into account the quality of the video sequence. In addition, by allowing a controlled amount of prediction drift, we can set the rate control of the base layer much higher and gain in some cases several dB of PSNR performance at the highest rate. Experimental comparisons are made using SAMCoW, a FFGS video coder based on the wavelet transform and motion compensated prediction, and the MPEG-4/FGS coder using the TM-5 rate control algorithm.

Paper Details

Date Published: 4 January 2002
PDF: 12 pages
Proc. SPIE 4671, Visual Communications and Image Processing 2002, (4 January 2002); doi: 10.1117/12.453126
Show Author Affiliations
Josep Prades-Nebot, Univ. Politecnica de Valencia (Spain)
Gregory W. Cook, Purdue Univ. (United States)
Edward J. Delp, Purdue Univ. (United States)


Published in SPIE Proceedings Vol. 4671:
Visual Communications and Image Processing 2002
C.-C. Jay Kuo, Editor(s)

© SPIE. Terms of Use
Back to Top