Share Email Print
cover

Proceedings Paper

Signal adaptive processing in MPEG-2 decoders with embedded resizing for interlaced video
Author(s): Zhun Zhong; Yingwei Chen; Tse-Hua Lan
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Video decoding at reduced resolution with resizing embedded in the decoding loop saves computational resources such as memory, memory bandwidth and CPU cycles. Key to such embedded resizing is proper filtering/scaling of DCT data, and motion compensation at the reduced resolution. Although MPEG-2 video decoding with embedded resizing has been investigated in the past, little work has been reported on solving problems associated with interlaced video undergoing decoding with embedded resizing. In particular, annoying artifacts may occur in moving areas of interlaced video due to improper scaling or motion compensation. In this paper, we introduce the notion of the Local Interlacing Property for interlaced moving areas and propose algorithms to detect and process data with the Local Interlacing Property properly in the context of decoding with embedded resizing. Specifically, we demonstrate that 1) vertical high frequency in interlaced moving areas should be preserved during downscaling, and 2) phase shift must be added for motion compensation in interlaced moving areas under certain circumstances. Experimental results show that our method effectively removes artifacts in interlaced moving areas, making MPEG-2 video decoding with embedded resizing a practical tradeoff for interlaced video.

Paper Details

Date Published: 4 January 2002
PDF: 8 pages
Proc. SPIE 4671, Visual Communications and Image Processing 2002, (4 January 2002); doi: 10.1117/12.453084
Show Author Affiliations
Zhun Zhong, Philips Research USA (United States)
Yingwei Chen, Philips Research USA (United States)
Tse-Hua Lan, Philips Research USA (United States)


Published in SPIE Proceedings Vol. 4671:
Visual Communications and Image Processing 2002
C.-C. Jay Kuo, Editor(s)

© SPIE. Terms of Use
Back to Top