Share Email Print
cover

Proceedings Paper

Number representation optimization for low-power multiplier design
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Multipliers using different number representation systems have different power/area/delay characteristics. This paper studies the effects of number representations on power consumption and proposes optimization techniques for two's-complement multipliers. By examining existing radix-4 recoding design schemes, two power-improved designs are proposed for standard cell CMOS technology. With new recoding schemes, the power efficiency of radix-4 multipliers versus radix-2 multipliers are re-investigated. To utilize the power efficiency of sign-magnitude representation, number representation conversion schemes are proposed. For a typical data set from application djpeg, the conversion schemes consume less than 30% power of the baseline schemes.

Paper Details

Date Published: 6 December 2002
PDF: 12 pages
Proc. SPIE 4791, Advanced Signal Processing Algorithms, Architectures, and Implementations XII, (6 December 2002); doi: 10.1117/12.452045
Show Author Affiliations
Zhijun Huang, Univ. of California/Los Angeles (United States)
Milos D. Ercegovac, Univ. of California/Los Angeles (United States)


Published in SPIE Proceedings Vol. 4791:
Advanced Signal Processing Algorithms, Architectures, and Implementations XII
Franklin T. Luk, Editor(s)

© SPIE. Terms of Use
Back to Top