Share Email Print

Proceedings Paper

Thermal detection of trapped charge carriers in organic transport materials
Author(s): Norwin von Malm; Juergen Steiger; Torsten Finnberg; Roland Schmechel; Heinz von Seggern
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The effect of trap states on the transport and luminescence properties of organic light emitting diodes (OLEDs) is studied. For trap level detection energy resolved thermally stimulated current (TSC) measurements known as fractional glow are utilized to determine the density of occupied states (DOOS) in various organic semiconductors such as the small molecule systems Alq3 [aluminum tris(8-hydroxyquinoline)], 1-NaphDATA {4,4',4"-tris-[N-(1-naphtyl)-N-phenylamino]-triphenylamine} and α-NPD [N,N'-di-(1-naphthyl)-N,N'-diphenylbenzidine] and the polymeric semiconductor MDMO-PPV {poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene]}. Characteristic differences in the trap spectra are obtained and interpreted in terms of possible structural and compositional origins of the investigated materials. In order to judge the formation process of traps and their practical consequences on the charge carrier transport I-V and L-V characteristics of 1-NaphDATA doped α-NPD devices and α-NPD doped 1-NaphDATA devices were compared to respective non-doped samples. A clearly reduced current and luminescence was found only in the former case. It was possible to conclude that the detected electronic trap states either act as hole traps or as scattering centers. Furthermore, pulsed transport studies on ITO/α-NPD/Alq3/Al devices show thte critical influence of traps on the dynamical performance of the charge transport. In a two-pulse experiment the carrier injection and trap depletion can be separated.

Paper Details

Date Published: 3 March 2003
PDF: 8 pages
Proc. SPIE 4800, Organic Light-Emitting Materials and Devices VI, (3 March 2003); doi: 10.1117/12.451903
Show Author Affiliations
Norwin von Malm, Darmstadt Univ. of Technology (Germany)
Juergen Steiger, Covion Organic Semiconductors GmbH (Germany)
Torsten Finnberg, Darmstadt Univ. of Technology (Germany)
Roland Schmechel, Darmstadt Univ. of Technology (Germany)
Heinz von Seggern, Darmstadt Univ. of Technology (Germany)

Published in SPIE Proceedings Vol. 4800:
Organic Light-Emitting Materials and Devices VI
Zakya H. Kafafi; Homer Antoniadis, Editor(s)

© SPIE. Terms of Use
Back to Top