Share Email Print
cover

Proceedings Paper

Efficient implementation of a projection-based wavefront sensor
Author(s): John Holder; Stephen C. Cain; Peter Mantica
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In this paper, a new wave front sensor design that utilizes the benefits of image projections is described and analyzed. The projection-based wave front sensor is similar to a Shack-Hartman type wave front sensor, but uses a correlation algorithm as opposed to a centroiding algorithm to estimate optical tilt. This allows the projection-based wave front sensor to estimate optical tilt parameters while guiding off of point sources and extended objects at very low signal to noise ratios. The implementation of the projection-based wave front sensor is described in detail showing important signal processing steps on and off of the focal plane array of the sensor. In this paper the design is tested in simulation for speed and accuracy by processing simulated astronomical data. These simulations demonstrate the accuracy of the projection-based wave front sensor and its superior performance to that of the traditional Shack-Hartman wave front sensor. Timing analysis is presented which shows how the collection and processing of image projections is computationally efficient and lends itself to a wave front sensor design that can produce adaptive optical control signals at speeds of up to 500 hz.

Paper Details

Date Published: 6 December 2002
PDF: 9 pages
Proc. SPIE 4791, Advanced Signal Processing Algorithms, Architectures, and Implementations XII, (6 December 2002); doi: 10.1117/12.451726
Show Author Affiliations
John Holder, Indiana Univ.-Purdue Univ./Fort Wayne (United States)
Stephen C. Cain, ITT Aerospace/Communications Div. (United States)
Peter Mantica, Indiana Univ.-Purdue Univ./Fort Wayne (United States)


Published in SPIE Proceedings Vol. 4791:
Advanced Signal Processing Algorithms, Architectures, and Implementations XII
Franklin T. Luk, Editor(s)

© SPIE. Terms of Use
Back to Top