Share Email Print
cover

Proceedings Paper

Remanent transmission neutron polarizer
Author(s): Jochen Stahn; Daniel Clemens
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Our goal is to develop magnetically remanent neutron supermirrors using the material combinations Fe/Si and FeCo/Si. With these we plan to build compact neutron transmission polarizers and neutron polarizers which can be operated with their magnetization oriented antiparallel to the guide field. In the latter case no spin flipper is necessary to switch to the other spin state. The supermirrors are produced by magnetron sputtering. The preparation conditions were optimized by producing series of multilayers where the sputtering parameters gas pressures, plasma power and the speed of substrate translation were varied. Neutron reflectivity and transmission were measured with the polarized neutron diffractometer TOPSI at SINQ. Stress and magnetic behavior were determined using a profilometer and a vibrating sample magnetometer, respectively. The existence of an easy axis of magnetization is caused by anisotropic tensile stress in the Fe layers. Since the stress in Si is compressive it is possible to reduce the total stress while keeping the remanence by adding the reactive gases O2 and N2 to Si. In this way it was possible to produce Fe/Si supermirrors which show polarizing efficiencies of 96% to 99%. These supermirrors having 299 layers in total, reflect spin up neutrons up to q = 0.55/nm (m=2.5) which allows for their use as transmission polarizers in Ni coated beam guides.

Paper Details

Date Published: 18 November 2002
PDF: 8 pages
Proc. SPIE 4785, Advances in Neutron Scattering Instrumentation, (18 November 2002); doi: 10.1117/12.451681
Show Author Affiliations
Jochen Stahn, ETH Zürich (Switzerland)
Paul Scherrer Institute (Switzerland)
Daniel Clemens, ETH Zürich (Switzerland)
Paul Scherrer Institute (Switzerland)
Hahn-Meitner-Institut (Germany)


Published in SPIE Proceedings Vol. 4785:
Advances in Neutron Scattering Instrumentation
Ian S. Anderson; Bruno Guérard, Editor(s)

© SPIE. Terms of Use
Back to Top