Share Email Print

Proceedings Paper

Damage resistant and low-stress Si-based multilayer mirrors
Author(s): Torsten Feigl; Sergey A. Yulin; Thomas Kuhlmann; Norbert Kaiser
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Applications of multilayer mirrors for extreme ultraviolet lithography (EUVL) require not only a high normal incidence reflectivity but also a long lifetime and minimal residual stress. A serious problem of Mo-Si multilayers is the structural instability in the case of localized absorption of in- and outband radiation from the EUV source followed by the degradation of the multilayer. A number os solutions have been envisaged in the past, including the use of compound materials (MoSi2Si) as well as the use of C barrier layers. We focused our interest on two Si-based systems: Mo/Si and Mo2C/Si multilayer mirrors. The mirrors were designed for normal incidence reflectivity at about 13 nm wavelength and were deposited by dc magnetron sputtering. Maximum normal incidence reflectivities of 68.4%12.8 nm for Mo/Si multilayer mirrors and 66.8%12.8 nm for Mo2C/Si have been achieved. Investigating the thermal stability of the multilayers in the temperature range from 300 degree(s)C to 500 degree(s)C we found that the reflectivity of Mo/Si mirrors is drastically decreasing after annealing above 300 degree(s)C, whereas the Mo2C/Si multilayers show a superior stability up to 400 degree(s)C...500 degree(s)C. Another problem of EUV multilayer mirrors is the large residual compressive stress (-400 to - 500 MPa), which causes undesirable distortion of the substrate figure. The reduction of residual stress of Mo/Si and Mo2C/Si multilayers with annealing has been investigated. Using a slow thermal annealing (1 degree(s)C/min), it is possible to reduce the stress from -520 MPa to zero by heating the Mo/Si samples up to 310 degree(s)C. However, this results ina reflectivity drop of about 3...4%. On the other hand one can reduce the stress of a Mo2C/Si multilayer from -490 MPa to zero by annealing without a considerable reflectivity drop.

Paper Details

Date Published: 20 December 2001
PDF: 6 pages
Proc. SPIE 4506, Soft X-Ray and EUV Imaging Systems II, (20 December 2001); doi: 10.1117/12.450958
Show Author Affiliations
Torsten Feigl, Fraunhofer-Institut fuer Angewandte Optik und Feinmechanik (Germany)
Sergey A. Yulin, Fraunhofer-Institut fuer Angewandte Optik und Feinmechanik (Germany)
Thomas Kuhlmann, Fraunhofer-Institut fuer Angewandte Optik und Feinmechanik (Germany)
Norbert Kaiser, Fraunhofer-Institut fuer Angewandte Optik und Feinmechanik (Germany)

Published in SPIE Proceedings Vol. 4506:
Soft X-Ray and EUV Imaging Systems II
Daniel A. Tichenor; James A. Folta, Editor(s)

© SPIE. Terms of Use
Back to Top