Share Email Print
cover

Proceedings Paper

E-type polarizers and retarders
Author(s): Pavel I. Lazarev; Michael Paukshto
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

New Thin Crystal Film (TCF) polarizers and retarders are produced by deposition of water based lyotropic liquid crystals formed by supramolecules of dichroic dyes. The supramolecules have an aspect ratio of more than 100 with a "spaghetti-like" structure. The supramolecules are formed by disk-shaped aromatic molecules that self-assemble into columnar stack (or strand-like) structures. In the course of deposition, shear force is applied and the supramolecules are aligned along the shear force direction in a wet layer about 10 microns thick. While drying, the layer of lyotropic liquid crystal phase-transitions into a sub-micron TCF functional layer with the dichroic dye molecules aligned in the same fashion over the entire coated surface. Layers of TCF can be deposited on a wide variety of materials including plastic and glass. The coatings exhibit properties of an E-type polarizer in wavebands where molecules exhibit absorption and birefringence up to 0.8 in areas of spectra where absorption is minimal. Several types of TCF polarizers and retarders have been produced and tested in order to improve the performance of LCDs. These films enhance the contrast, viewing angle performance and color rendering of many types of LCDs.

Paper Details

Date Published: 25 September 2002
PDF: 10 pages
Proc. SPIE 4819, Polarization Measurement, Analysis, and Applications V, (25 September 2002); doi: 10.1117/12.450933
Show Author Affiliations
Pavel I. Lazarev, Optiva, Inc. (United States)
Michael Paukshto, Optiva, Inc. (United States)


Published in SPIE Proceedings Vol. 4819:
Polarization Measurement, Analysis, and Applications V
Dennis H. Goldstein; David B. Chenault, Editor(s)

© SPIE. Terms of Use
Back to Top