Share Email Print

Proceedings Paper

Radiometrically calibrated scene-based nonuniformity correction for infrared array sensors
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper describes how a limited form of black-body-based calibration can be integrated into a recently developed algebraic scene-based algorithm for nonuniformity correction (NUC) in focal-plane arrays. The result of this integration is a scene-based NUC algorithm that is radiometrically accurate. By calibrating only those detectors that are on the array perimeter and relying on the scene-based algorithm to calibrate the interior detectors, using the perimeter detectors as a reference, radiometric accuracy can be achieved without disturbing the functionality of interior array elements. What makes this possible is the fact that the scene-based NUC algorithm used here is algebraic in nature and does not rely on any statistical assumptions on the scene irradiance in the image sequence. The algorithm utilizes knowledge of inter-frame motion to 'lock' the biases of the interior array elements to those on the boundary. Notably, this can be achieved regardless of the spatial diversity in the scene and with, typically, a minimal number of frames in an image sequence. The performance of the technique is demonstrated using real infrared data.

Paper Details

Date Published: 23 January 2003
PDF: 9 pages
Proc. SPIE 4820, Infrared Technology and Applications XXVIII, (23 January 2003); doi: 10.1117/12.450916
Show Author Affiliations
Bradley M. Ratliff, Univ. of New Mexico (United States)
Majeed M. Hayat, Univ. of New Mexico (United States)
J. Scott Tyo, Univ. of New Mexico (United States)

Published in SPIE Proceedings Vol. 4820:
Infrared Technology and Applications XXVIII
Bjorn F. Andresen; Gabor F. Fulop; Marija Strojnik, Editor(s)

© SPIE. Terms of Use
Back to Top