Share Email Print

Proceedings Paper

Free-electron laser at the TESLA Test Facility at DESY: toward a tunable short-pulsed soft x-ray source
Author(s): Christopher Gerth
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A high peak current, low emittance, short pulse electron beam can produce intense, laser-like radiation in a single pass through a long periodic magnetic structure. The construction of such free-electron lasers (FELs) based on self-amplified spontaneous emission (SASE) has become feasible by recent advances in accelerator technologies. Since SASE FELs do not require any optical components they are promising sources for the generation of intense, sub- picosecond laser pulses which are continuously tunable over a wide wavelength range in the vacuum ultraviolet (VUV) and X-ray region. In the first phase of the VUV-FEL (phase I) at the TESLA Test Facility at DESY, SASE was achieved for the first time in the VUV at wavelengths between 80 and 180 nm. The concept of the VUV FEL at DESY and first experimental results are presented. The second phase of the TESLA Test Facility (phase II), which includes an increase of the electron beam energy to 1 GeV, aims at the construction of a SASE FEL operating in the soft X-ray region. An overview of the current status and the activities toward a soft X-ray FEL user facility is given.

Paper Details

Date Published: 12 December 2001
PDF: 15 pages
Proc. SPIE 4505, Soft X-Ray Lasers and Applications IV, (12 December 2001); doi: 10.1117/12.450583
Show Author Affiliations
Christopher Gerth, Deutsches Elektronen-Synchrotron (Germany)

Published in SPIE Proceedings Vol. 4505:
Soft X-Ray Lasers and Applications IV
Ernst E. Fill; Jorge J. G. Rocca, Editor(s)

© SPIE. Terms of Use
Back to Top