Share Email Print

Proceedings Paper

Spectral investigation of normal skin tissue in vivo via fiber-optical evanescent wave Fourier transform infrared (FEW-FTIR) spectroscopy
Author(s): Angelique Kano
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

New applications for the Fiberoptic Evanescent Wave Fourier Transform (FEW-FTIR) method have been developed for the diagnostics of skin surfaces. Our technique allows for the detection of functional groups in the molecular structure of skin tissue noninvasively and in vivo. The FEW-FTIR spectroscopic method is direct, nondestructive, and fast. Our optical fibers for the middle infrared (MIR) range are nontoxic, nonhygroscopic, flexible, and characterized by extremely low losses. This combination of traditional FTIR spectroscopy and advanced fiber technology has enabled us to noninvasively investigate normal skin tissue in vivo in the range of 900 to 4000 cm-1. The second derivative spectra of the baseline-corrected and normalized data have been calculated to determine the peak positions. We have obtained for the first time a more detailed understanding of normal skin tissue fusing FTIR spectroscopy. Despite the complex nature of human skin tissue, the MIR spectra of normal human skin surface tissue has some basic characteristics seen in all cases. The results of our surface analysis of skin tissue are discussed in terms of spectral parameters, band assignments, and molecular structural similarities and differences. Our results have revealed that our spectral parameters can be separated into four distinct classes, providing us with a preliminary model of normal human skin tissue.

Paper Details

Date Published: 27 November 2001
PDF: 11 pages
Proc. SPIE 4491, Subsurface and Surface Sensing Technologies and Applications III, (27 November 2001); doi: 10.1117/12.450170
Show Author Affiliations
Angelique Kano, Univ. of Nevada/Reno (United States)

Published in SPIE Proceedings Vol. 4491:
Subsurface and Surface Sensing Technologies and Applications III
Cam Nguyen, Editor(s)

© SPIE. Terms of Use
Back to Top