Share Email Print
cover

Proceedings Paper

Numerical modeling of a complete ground-penetrating radar system
Author(s): Bernhard Lampe; Klaus Holliger
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The generation and recording of electromagnetic waves by typical ground-penetrating radar (GPR) sounding systems is complex and the effects of the antennas on the recorded data are not well understood. To address this problem, we present a versatile and efficient GPR system simulation tool. This algorithm is based on a finite-difference time-domain (FDTD) approximation of Maxwell's equations and allows us to model realistically the radiation characteristics of a wide variety of typical surface GPR antenna systems. The accuracy of the algorithm is benchmarked and validated with respect to extensive laboratory measurements for comparable antenna systems. Given the flexibility of this GPR modeling software, we anticipate that it will be useful not only for the design and interpretation of GPR surveys, but also for the design of novel GPR sounding systems.

Paper Details

Date Published: 27 November 2001
PDF: 12 pages
Proc. SPIE 4491, Subsurface and Surface Sensing Technologies and Applications III, (27 November 2001); doi: 10.1117/12.450151
Show Author Affiliations
Bernhard Lampe, Swiss Federal Institute of Technology (Switzerland)
Klaus Holliger, Swiss Federal Institute of Technology (Switzerland)


Published in SPIE Proceedings Vol. 4491:
Subsurface and Surface Sensing Technologies and Applications III
Cam Nguyen, Editor(s)

© SPIE. Terms of Use
Back to Top