Share Email Print

Proceedings Paper

Data compression via pulse-to-pulse redundancy for radar emitter location
Author(s): Mark L. Fowler; Zhen Zhou
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

An effective method for geolocation of a radar emitter is to intercept its signal at multiple platforms and share the data to allow measurement of the time-difference-of-arrival (TDOA) and the frequency-difference-of-arrival (FDOA). This requires effective data compression. For radar location we show that it is possible to exploit pulse-to-pulse redundancy. A compression method is developed that exploits the singular value decomposition (SVD) to compress the intercepted radar pulse train. This method consists of five steps: (i) pulse gating, (ii) pulse alignment, (iii) matrix formation, (iv) SVD-based rank reduction, and (v) encoding. Matrix formation places aligned pulses into rows to form a matrix that has rank close to one and SVD truncation gives a low rank approximate matrix. We show that (i) compression is maximized if the matrix is made to have two-thirds as many rows as columns and (ii) truncation to a rank-one matrix is feasible. We interpret this as extracting a prototype pulse trainlet. The maximum compression ratio is expressed in terms of the number of pulses and the number of samples per pulse and point out a particularly interesting and important characteristic - the compression ratio increases as the total number of signal samples increases. Theoretical and simulation results show that this approach provides a compression ratio up to about 30:1 in practical signal scenarios.

Paper Details

Date Published: 5 December 2001
PDF: 12 pages
Proc. SPIE 4475, Mathematics of Data/Image Coding, Compression, and Encryption IV, with Applications, (5 December 2001); doi: 10.1117/12.449572
Show Author Affiliations
Mark L. Fowler, SUNY/Binghamton (United States)
Zhen Zhou, SUNY/Binghamton (United States)

Published in SPIE Proceedings Vol. 4475:
Mathematics of Data/Image Coding, Compression, and Encryption IV, with Applications
Mark S. Schmalz, Editor(s)

© SPIE. Terms of Use
Back to Top