Share Email Print
cover

Proceedings Paper

Ultrasonic imaging of subsurface objects using photorefractive dynamic holography
Author(s): Vance A. Deason; Kenneth L. Telschow; Scott M. Watson
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The INEEL has developed a photorefractive ultrasonic imaging technology that records both phase and amplitude of ultrasonic waves on the surface of solids. Phase locked dynamic holography provides full field images of these waves scattered from subsurface defects in solids, and these data are compared with theoretical predictions. Laser light reflected by a vibrating surface is imaged into a photorefractive material where it is mixed in a heterodyne technique with a reference wave. This demodulates the data and provides an image of the ultrasonic waves in either 2 wave or 4 wave mixing mode. These data images are recorded at video frame rates and show phase locked traveling or resonant acoustic waves. This technique can be used over a broad range of ultrasonic frequencies. Acoustic frequencies from 2 kHz to 10 MHz have been imaged, and a point measuring (non-imaging) version of the system has measured picometer amplitudes at 1 Ghz.

Paper Details

Date Published: 26 November 2001
PDF: 6 pages
Proc. SPIE 4448, Optical Diagnostics for Fluids, Solids, and Combustion, (26 November 2001); doi: 10.1117/12.449372
Show Author Affiliations
Vance A. Deason, Idaho National Engineering and Environmental Lab. (United States)
Kenneth L. Telschow, Idaho National Engineering and Environmental Lab. (United States)
Scott M. Watson, Idaho National Engineering and Environmental Lab. (United States)


Published in SPIE Proceedings Vol. 4448:
Optical Diagnostics for Fluids, Solids, and Combustion
Carolyn R. Mercer; Soyoung Stephen Cha; Gongxin Shen, Editor(s)

© SPIE. Terms of Use
Back to Top