Share Email Print
cover

Proceedings Paper

Fabrication method of 3D feed horn shape MEMS antenna array using MRPBI system and application for microbolometer
Author(s): Jong-Yeon Park; Kuntae Kim; Sung Moon; Jong-Oh Park; Myung-Hwan Oh; James Jungho Pak
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A 3D Feed horn shape MEMS antenna has some attractive features for array application, which can be used to improve microbolometer performance. Since MEMS technology have been faced many difficulties to fabrication of 3D feed horn shape MEMS antenna array itself. The purpose of this paper is to propose a new fabrication method to realize a 3D feed horn shape MEMS antenna array using a MRPBI(Mirror Reflected Parallel Beam Illuminator) system with an ultra-slow-rotated and inclined x-y-z stage. A high-aspect-ratio 300 micrometers sidewalls had been fabricated using SU-8 negative photo resist. It can be demonstrated to feasibility of realize 3D feed horn shape MEMS antenna array fabrication. In order to study the effect of this novel technique, the 3D feed horn shape MEMS antenna array had been simulated with HFSS(High Frequency Structure Simulator) tools and then compared with traditional 3D theoretical antenna models. As a result, it seems possible to use a 3D feed horn shape MEMS antenna at the tera hertz band to improve microbolometer performance and optical MEMS device fabrication.

Paper Details

Date Published: 21 November 2001
PDF: 11 pages
Proc. SPIE 4592, Device and Process Technologies for MEMS and Microelectronics II, (21 November 2001); doi: 10.1117/12.448991
Show Author Affiliations
Jong-Yeon Park, Korea Institute of Science and Technology and Korea Univ. (South Korea)
Kuntae Kim, Korea Institute of Science and Technology (South Korea)
Sung Moon, Korea Institute of Science and Technology (South Korea)
Jong-Oh Park, Korea Institute of Science and Technology (South Korea)
Myung-Hwan Oh, Korea Institute of Science and Technology (South Korea)
James Jungho Pak, Korea Univ. (South Korea)


Published in SPIE Proceedings Vol. 4592:
Device and Process Technologies for MEMS and Microelectronics II
Jung-Chih Chiao; Lorenzo Faraone; H. Barry Harrison; Andrei M. Shkel, Editor(s)

© SPIE. Terms of Use
Back to Top