Share Email Print

Proceedings Paper

Surface micromachining of uncooled infrared imaging array using anisotropic conductive film
Author(s): Weiguo Liu; Lingling Sun; Weiguang Zhu; Ooi Kiang Tan
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Micromachining processes have been extensively adapted in developing uncooled infrared imaging array. One of the most important sensing materials in the array is ferroelectric thin film. To integrate the ferroelectric thin film with the signal processing circuitry, an IC compatible process has to be applied. Various methods have been successfully used to prepare high quality oxide ferroelectric thin films. Unfortunately, not all of the methods are compatible with a standard CMOS process. None of them can optimize the ferroelectric thin film after it has been deposited onto IC chip due to high heat treatment temperature. A Flip-Chip Transfer (FCT) method is proposed here to optimize the ferroelectric thin film separately with the IC chip. Doing so, any necessary measure could be taken to optimize the performance of the ferroelectric thin film. After that, anisotropic conductive film (ACF) is applied between the ferroelectric thin film and the IC chip to establish interconnection and mechanical bonding between the sensing element and the signal processing circuit. Micromachining process is then applied to remove the substrate, usually Si, on which the sensing material is deposited. A 128x1 linear pyroelectric infrared imaging array is being fabricated.

Paper Details

Date Published: 21 November 2001
PDF: 7 pages
Proc. SPIE 4592, Device and Process Technologies for MEMS and Microelectronics II, (21 November 2001); doi: 10.1117/12.448961
Show Author Affiliations
Weiguo Liu, Nanyang Technological Univ. (Singapore)
Lingling Sun, Nanyang Technological Univ. (Singapore)
Weiguang Zhu, Nanyang Technological Univ. (Singapore)
Ooi Kiang Tan, Nanyang Technological Univ. (Singapore)

Published in SPIE Proceedings Vol. 4592:
Device and Process Technologies for MEMS and Microelectronics II
Jung-Chih Chiao; Lorenzo Faraone; H. Barry Harrison; Andrei M. Shkel, Editor(s)

© SPIE. Terms of Use
Back to Top