Share Email Print
cover

Proceedings Paper

Fully digital pixel readout architecture with a current-mode A/D converter
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Camera-on-a-CMOS chip will be an inevitable component of future intelligent vision systems. However, up till now, the dominant format of data in imaging devices is still analog. The analog photocurrent or sampled voltage is transferred to the ADC via a column or a column/row bus. Moreover, in the active pixel configuration the area occupied by circuitry reduces significantly the fill factor, so that there are heavy constraints imposed on the size of the circuits used. In this paper a concept of back illuminated focal plane is presented. The system consists of two chips bonded face to face using Indium bumps. The top chip, which is the seeing chip, is thinned and the light signal is applied to the bottom surface. The bottom chip is the processing chip and it contains a distributed array of analog-to digital converters. As the seeing chip is fully dedicated to photosensors the fill factor can be increased from 25-40% possible on a single plane to over 95% with two planes. The analog-to-digital converters are algorithmic current-mode converters, where one-bit cell is implemented in the processing area facing one-pixel. Eight such cells are cascaded to form an 8-bit converter. As a result, a fully digital pixel readout is obtained.

Paper Details

Date Published: 19 November 2001
PDF: 6 pages
Proc. SPIE 4593, Design, Characterization, and Packaging for MEMS and Microelectronics II, (19 November 2001); doi: 10.1117/12.448854
Show Author Affiliations
Kamran Eshraghian, Edith Cowan Univ. (Australia)
Stefan W. Lachowicz, Edith Cowan Univ. (Australia)


Published in SPIE Proceedings Vol. 4593:
Design, Characterization, and Packaging for MEMS and Microelectronics II
Paul D. Franzon; Ajay P. Malshe; Francis E.H. Tay, Editor(s)

© SPIE. Terms of Use
Back to Top