Share Email Print

Proceedings Paper

Massively parallel per-pixel-based zerotree processing architecture for real-time video compression
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In the span of a few years, mobile multimedia communication has rapidly become a significant area of research and development constantly challenging boundaries on a variety of technological fronts. Video compression, a fundamental component for most mobile multimedia applications, generally places heavy demands in terms of the required processing capacity. Hardware implementations of typical modern hybrid codecs require realisation of components such as motion compensation, wavelet transform, quantisation, zerotree coding and arithmetic coding in real-time. While the implementation of such codecs using a fast generic processor is possible, undesirable trade-offs in terms of power consumption and speed must generally be made. The improvement in power consumption that is achievable through the use of a slow-clocked massively parallel processing environment, while maintaining real-time processing speeds, should thus not be overlooked. An architecture to realise such a massively parallel solution for a zerotree entropy coder is, therefore, presented in this paper.

Paper Details

Date Published: 19 November 2001
PDF: 11 pages
Proc. SPIE 4593, Design, Characterization, and Packaging for MEMS and Microelectronics II, (19 November 2001); doi: 10.1117/12.448851
Show Author Affiliations
Geoffrey Alagoda, Edith Cowan Univ. (Australia)
Alexander Mark Rassau, Edith Cowan Univ. (Australia)
Kamran Eshraghian, Edith Cowan Univ. (Australia)

Published in SPIE Proceedings Vol. 4593:
Design, Characterization, and Packaging for MEMS and Microelectronics II
Paul D. Franzon; Ajay P. Malshe; Francis E.H. Tay, Editor(s)

© SPIE. Terms of Use
Back to Top