Share Email Print
cover

Proceedings Paper

Formation of optical microlens by laser polymerization method
Author(s): Kaoru Suzuki
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Optical lens of micrometer order diameter for coupling between optical fiber and laser diode were formed by argon ion laser polymerization method at visible light cured resin. Test resin materials consisted of triethylene glycol dimethacrylate for main resin, camphorquinon for photo initiator of visible light area, hydroquinon for inhibitor, and N,N-dimethylmethacrylate for reducing agent. In order to obtain the micro lens of short focal length and small spherical aberration, the use of this technique makes it possible to simultaneously form the polymerized aria on glass plate at the argon ion laser beam irradiation zone. The polmerized aria made a high quality micro lens without using molding pattern. We have verified our claims with visual inspection, ray trajectory calculations for measurement of side long spherical aberration (transverse aberration), Fourier transform infrared spectroscopy for degree of conversion analysis of polymerized resin area, and Duc de Chaulnes method for measurement of lens shape. The lens has a diameter of 300micrometers or more, a focal length of 500micrometers or more with an NA of 0.5, and transverse aberration plot of about 100% of the within the limits of +/- 25micrometers . This method can be applied for producing circular, non-circular, linear, and array micro lenses by scanning or patterning of argon ion laser beam.

Paper Details

Date Published: 13 November 2001
PDF: 9 pages
Proc. SPIE 4437, Gradient Index, Miniature, and Diffractive Optical Systems II, (13 November 2001); doi: 10.1117/12.448156
Show Author Affiliations
Kaoru Suzuki, Nihon Univ. (Japan)


Published in SPIE Proceedings Vol. 4437:
Gradient Index, Miniature, and Diffractive Optical Systems II
Thomas J. Suleski, Editor(s)

© SPIE. Terms of Use
Back to Top