Share Email Print

Proceedings Paper

Multiphoton fluorescence imaging through biological tissue and image reconstruction
Author(s): Xiasong Gan; Min Gu
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this paper, image formation under single-photon (1-p), two-photon (2-p) and three-photon (3-p) fluorescence imaging through turbid media which consist of different sized scatterers has been investigated in detail. It has been demonstrated that the size of scattering particles plays an important role in determining whether to use 1-p, 2-p, or 3-p excitation. For small scatterers, where Rayleigh scattering is dominant, multi-photon excitation provides significantly better resolution. Such improvement reduces dramatically for large scatterers, where Mie scattering becomes dominant. Another disadvantage of using multi-photon fluorescence excitation in highly scattered media is that penetration depth is limited by fast dropping of signal strength in deep tissue imaging. In this paper, we introduce a deconvolution method with a novel concept of the effective point spread function, which is effective in restoring the loss of imaging resolution caused by multiple scattering in a tissue medium.

Paper Details

Date Published: 2 November 2001
PDF: 7 pages
Proc. SPIE 4431, Photon Migration, Optical Coherence Tomography, and Microscopy, (2 November 2001); doi: 10.1117/12.447426
Show Author Affiliations
Xiasong Gan, Swinburne Univ. of Technology (Australia)
Min Gu, Swinburne Univ. of Technology (Australia)

Published in SPIE Proceedings Vol. 4431:
Photon Migration, Optical Coherence Tomography, and Microscopy
Stefan Andersson-Engels; Michael F. Kaschke, Editor(s)

© SPIE. Terms of Use
Back to Top