Share Email Print

Proceedings Paper

Landmine signatures in ground-penetrating radar
Author(s): Jay A. Marble; Daren Wilcox; Russell M. Mersereau
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The Mine Hunter/Killer system employs a ground penetrating radar (GPR). Twenty antennas sample a 3m swath to measure a 3D depth return from the earth as the vehicle moves forward in a lane. Data has been collected on shallow and deep, metal and low metal landmines. Samples signatures from a metal and plastic cased landmines buried at 6 inches are presented. In each example a hyperbolic signature is observed. Two feature sets that exploit the hyperbolic shape for false alarm reduction are presented. The first uses a pixel clustering technique to isolate the hyperbola in 3D. A vector of size/shape features is extracted and combined with a quadratic polynomial discriminant into a single value. The second feature set utilizes the radon transform. The radon transform sums the tails of the hyperbola allowing the algorithm to differentiate between surface clutter, which tends to be oriented horizontally in depth, and the diagonals of the hyperbola. Performance curves for both the 3D size/shape features and the radon feature are presented.

Paper Details

Date Published: 18 October 2001
PDF: 10 pages
Proc. SPIE 4394, Detection and Remediation Technologies for Mines and Minelike Targets VI, (18 October 2001); doi: 10.1117/12.445525
Show Author Affiliations
Jay A. Marble, Veridian Systems, Inc. (United States)
Daren Wilcox, Georgia Institute of Technology (United States)
Russell M. Mersereau, Georgia Institute of Technology (United States)

Published in SPIE Proceedings Vol. 4394:
Detection and Remediation Technologies for Mines and Minelike Targets VI
Abinash C. Dubey; James F. Harvey; J. Thomas Broach; Vivian George, Editor(s)

© SPIE. Terms of Use
Back to Top