Share Email Print

Proceedings Paper

GPR application of the conical spiral antenna probe
Author(s): Harold R. Raemer; Carey M. Rappaport
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The project motivating this paper is the deployment of a frequency independent antenna on the transceiver of a monostatic ground-penetrating radar used to detect mines. The design goal is that the radiation pattern and input impedance to nearly uniform over a band from 1 GHz to 5GHz if the antenna is partially immersed in a typical soil medium. The contemplated method of deployment is to have the antenna straddle the air-soil interface i.e. partly in free space and partly underground, radiating into the ground. The particular subclass of frequency-independent antenna under investigation for this application is the conical equiangular-spiral antenna, in which thin wires are wound around a conical frame and the radiation is from the apex and reaches its peak in the axial direction. The conical structure, about 50cm long and with a maximum diameter of 12cm, is thrust into the ground apex-first at an angle of about 70 degrees to the vertical.

Paper Details

Date Published: 18 October 2001
PDF: 12 pages
Proc. SPIE 4394, Detection and Remediation Technologies for Mines and Minelike Targets VI, (18 October 2001); doi: 10.1117/12.445505
Show Author Affiliations
Harold R. Raemer, Northeastern Univ. (United States)
Carey M. Rappaport, Northeastern Univ. (United States)

Published in SPIE Proceedings Vol. 4394:
Detection and Remediation Technologies for Mines and Minelike Targets VI
Abinash C. Dubey; James F. Harvey; J. Thomas Broach; Vivian George, Editor(s)

© SPIE. Terms of Use
Back to Top