Share Email Print
cover

Proceedings Paper

ATR discrimination-SNR for HRR assuming chi2 model of RCS variability
Author(s): Craig R. Holt; Steven L. Schmidt; Joseph B. Attili
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A discrimination SNR for predicting classification performance is developed as an analogy to the RADAR equation that is used to predict detection performance. It assumes a statistical model for the target radar cross-section (RCS) and that the resulting likelihood classifier is employed. The relationship between the probability of classification errors and the dB value of the discrimination SNR is obtained. A specific form for the likelihood classifier and the discrimination SNR is developed assuming that the variability of the target RCS is described by a (chi) 2 - distribution. The form of this (chi) 2 - based classifier is novel and significantly different from the more common Gaussian based mean-square-error classifier. It is shown that the discrimination SNR has an intuitive interpretation in terms of the number of radar samples, the average contrast between targets and the contrast-noise. The use of this tool is illustrated using compact range High Range Resolution (HRR) Doppler measurements from the U.S. Army National Ground Intelligence Center (NGIC). The sensitivity of ATR performance to radar parameters is quantified using the discrimination SNR with gains measured in meaningful dB units.

Paper Details

Date Published: 22 October 2001
PDF: 10 pages
Proc. SPIE 4379, Automatic Target Recognition XI, (22 October 2001); doi: 10.1117/12.445371
Show Author Affiliations
Craig R. Holt, AETC, Inc. (United States)
Steven L. Schmidt, AETC, Inc. (United States)
Joseph B. Attili, AETC, Inc. (United States)


Published in SPIE Proceedings Vol. 4379:
Automatic Target Recognition XI
Firooz A. Sadjadi, Editor(s)

© SPIE. Terms of Use
Back to Top