Share Email Print
cover

Proceedings Paper

Portable sequential multicolor thermal imager based on a MCT 384 x 288 focal plane array
Author(s): Rainer Breiter; Wolfgang A. Cabanski; Karl-Heinz Mauk; Werner Rode; Johann Ziegler
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

AIM has developed a sequential multicolor thermal imager to provide customers with a test system to realize real-time spectral selective thermal imaging. In contrast to existing PC based laboratory units, the system is miniaturized with integrated signal processing like non-uniformity correction and post processing functions such as image subtraction of different colors to allow field tests in military applications like detection of missile plumes or camouflaged targets as well as commercial applications like detection of chemical agents, pollution control, etc. The detection module used is a 384x288 mercury cadmium telluride (MCT) focal plane array (FPA) available in the mid wave (MWIR) or long wave spectral band LWIR). A compact command and control electronics (CCE) provides clock and voltage supply for the detector as well as 14 bit deep digital conversion of the analog detector output. A continuous rotating wheel with four facets for filters provides spectral selectivity. The customer can choose between various types of filter characteristics, e.g. a 4.2 μm bandpass filter for CO2 detection in the MWIR band. The rotating wheel can be synchronized to an external source giving the rotation speed, typical 25 l/s. A position sensor generates the four frame start signals for synchronous operation of the detector -- 100 Hz framerate for the four frames per rotation. The rotating wheel is exchangeable for different configurations and also plates for a microscanner operation to improve geometrical resolution are available instead of a multicolor operation. AIM's programmable MVIP image processing unit is used for signal processing like non- uniformity correction and controlling the detector parameters. The MVIP allows to output the four subsequent images as four quarters of the video screen to prior to any observation task set the integration time for each color individually for comparable performance in each spectral color and after that also to determine separate NUC coefficients for each filter position. This procedure allows to really evaluate the pay off of spectral selectivity in the IR. The display part of the MVIP allows linear look up tables (LUT) for dynamic reduction as well as histogram equalization for automatic LUT optimization. Parallel to the video output a digital interface is provided for digital recording of the 14 bit corrected detector data. The architecture of the thermal imager with its components is presented in this paper together with some aspects on multicolor thermal imaging.

Paper Details

Date Published: 10 October 2001
PDF: 9 pages
Proc. SPIE 4369, Infrared Technology and Applications XXVII, (10 October 2001); doi: 10.1117/12.445317
Show Author Affiliations
Rainer Breiter, AEG Infrarot-Module GmbH (Germany)
Wolfgang A. Cabanski, AEG Infrarot-Module GmbH (Germany)
Karl-Heinz Mauk, AEG Infrarot-Module GmbH (Germany)
Werner Rode, AEG Infrarot-Module GmbH (Germany)
Johann Ziegler, AEG Infrarot-Module GmbH (Germany)


Published in SPIE Proceedings Vol. 4369:
Infrared Technology and Applications XXVII
Bjorn F. Andresen; Gabor F. Fulop; Marija Strojnik, Editor(s)

© SPIE. Terms of Use
Back to Top