Share Email Print
cover

Proceedings Paper

Optical wireless communications to OC-768 and beyond
Author(s): David B. Medved; Leonid Davidovich
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Laser and LED-based wireless communication systems are currently providing license-free interconnection for broadband voice, data and video transport. These systems allow for the immediate, reliable and low-cost extension of copper and fiber-based networks to any end user, providing efficient First Mile bypass access to high data rate backbone networks at speeds ranging from T-1 voice to full throughput ATM at 155 Mbps and up to Gigabit Ethernet. These wireless optical beams constitute a Virtual Fiber in the air, providing the capabilities of fiber in situations where wired connectivity is unavailable, impractical, expensive or slow-to-implement, while achieving a combination of low cost, speed and reliability that cannot be matched by microwave, mm wave, spread spectrum or other competing (actually complementary) wireless technologies. The carrier frequency of the optical beam is about 10,000 times higher than the highest frequencies used by the millimeter wave technology. By means of Wavelength Division Multiplexing more than 1000 independent data channels can be projected into the air on a single beam thus providing a potential bandwidth ten million times that of any RF solution. The twin barriers of physics and regulatory bureaucracy to this essentially infinite wireless bandwidth are thus eliminated by this Virtual Fiber. As user density and individual bandwidth needs escalate, the optical wireless will be the preferred medium of choice in both network and cellular interconnection. A mesh topology which integrates our optical wireless systems with the latest Optical Access switches and routing equipment will be described using case study examples from Japan to South America. As the Bandwidth Blowout continues to push the limits of electronics and especially in the case of DWDM (Dense Wavelength Division Multiples), the conventional optical wireless solutions are no longer feasible. Instead of using f.o. transceivers to convert photons to electrons and thence back to photons we have designed a series of airlinks whose transmitters and receivers operate without electronics. At the PATX (Photonic Airlink Transmitter), instead of demodulating the fiber optic input signals from a Network Interface Unit (NIU) we project the light from the polished terminated fiber end into the air using appropriate optics. Any signal being carried by the fiber from the NIU is now airborne without any intermediate processing electronics thus realizing the full potential of the optical carrier. At the receiver end (PARX - Photonic Airlink Receiver), the weak optical signals are collected by the appropriate optics (including combiners using large area MMF) and guided to the NIU (switch, PABX, etc.) by compatible fiber. It is necessary to maintain a large field-of-view at the receiver to ensure reliability, stability and ease of alignment. This is achieved by use of high N.A. fiber. In this paper we discuss the design trade off's, construction and field test results of several systems implementing the all- photonic wireless concept including: Transmission of WDM signals through the air at distances up to 1 km. Results with wireless transmission of Gigabit Ethernet using the Optiswitch modules as the NIU. Providing high speed wireless (Fast Ethernet and beyond) to the home at a cost of less than $250 per node. The paper will conclude with a discussion on the role of the all-photonic wireless technology in the emerging field of Passive Optical Networking.

Paper Details

Date Published: 18 October 2001
PDF: 8 pages
Proc. SPIE 4586, Wireless and Mobile Communications, (18 October 2001); doi: 10.1117/12.445256
Show Author Affiliations
David B. Medved, Optical Access, Inc. (Israel)
Leonid Davidovich, Optical Access, Inc. (Israel)


Published in SPIE Proceedings Vol. 4586:
Wireless and Mobile Communications
Hequan Wu; Jari Vaario, Editor(s)

© SPIE. Terms of Use
Back to Top