Share Email Print
cover

Proceedings Paper

Shock-layer-induced ultraviolet emissions measured by rocket payloads
Author(s): Leonard H. Caveny; David M. Mann
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Hypervelocity missiles in the continuum and near-continuum atmosphere produce high temperature shocklayers (i.e., greater than 4000 K at 3.5 km/s and 9000 K at 5.5 km/s). Atmospheric oxygen and nitrogen react and the products are excited to produce nitrogen oxide gamma-band radiation. Analyses and shock tube experiments explored the reaction chemistry and the emissions. Two rocket experiments were conducted to obtain ultraviolet (UV) data under flight conditions using innovative onboard instruments. The first (Bow Shock 1) flew onboard a Terrier-Malemute in April 1990; the second (Bow Shock 2) flew aboard a Strypi XI (Castor 1/Antares IIa/Star 27) in February 1991. The principal instruments were: (1) scanning UV spectrometers, from 190 to 400 nm, (2) quartz fiber-optic coupled photometers to measure selected spectral features, and (3) atomic oxygen (130.4 nm) and hydrogen Lyman-alpha (121.6 nm) detectors. Bow Shock 1 acquired new data on the spectral intensity from UV emissions at 3.5 km/s between 40 and 70 km. For example, at 55 km, the observations included well-defined spectra of nitrogen oxide gamma-band UV emitters with signal strengths more than 10 times stronger than recent theory predicted. Significant signal strength persisted to 70 km, 20 km higher than anticipated. Bow Shock 2 extended the velocity to 5 km/s. An additional scanning spectrometer and 8 photometers observed the downstream shock structures and shock plume interactions. Initial data interpretations indicate that aerodynamic interactions significantly enhance plume emissions.

Paper Details

Date Published: 1 August 1991
PDF: 9 pages
Proc. SPIE 1479, Surveillance Technologies, (1 August 1991); doi: 10.1117/12.44522
Show Author Affiliations
Leonard H. Caveny, Strategic Defense Initiative Organization (United States)
David M. Mann, Army Research Office (United States)


Published in SPIE Proceedings Vol. 1479:
Surveillance Technologies
Sankaran Gowrinathan; Raymond J. Mataloni; Stanley J. Schwartz, Editor(s)

© SPIE. Terms of Use
Back to Top