Share Email Print

Proceedings Paper

Dynamics of micro-object operation considering the adhesive effect under an SEM
Author(s): Shigeki Saito; Hideki T. Miyazaki; Tomomasa Sato; Kunio Takahashi; Tadao Onzawa
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper proposes a practical micro-object operation based on the dynamic analysis considering the adhesive effect under a scanning electron microscope (SEM). Recently, techniques of arranging micrometer-sized objects with high repeatability under a scanning electron microscope (SEM) are required to construct highly functional micro-devices. Since adhesion is dominant compared to gravity in the micro world, manipulation techniques using a needle-shaped tool by adhesive force are often adopted in basic researches where micro-objects are studied. These techniques, however, have not yet achieved the desired repeatability because many of these have been used just for the empirical reasons. Some even need the process of trial-and-error. Therefore, we analyze micro-object operation theoretically by introducing new physical factors, such as adhesive force and rolling-resistance, into the dynamic system consisting of a sphere, a needle-shaped tool, and a substrate. Through this analysis, we reveal that it is possible to fracture the contact interfaces selectively by controlling tool-loading angle reasonably. Based on the acquired knowledge, we also proposed the practical method of the pick and place operation of a micro-sphere under an SEM.

Paper Details

Date Published: 8 October 2001
PDF: 12 pages
Proc. SPIE 4568, Microrobotics and Microassembly III, (8 October 2001); doi: 10.1117/12.444134
Show Author Affiliations
Shigeki Saito, Tokyo Institute of Technology (Japan)
Hideki T. Miyazaki, Japan Science and Technology Corp. (Japan)
Tomomasa Sato, Univ. of Tokyo (Japan)
Kunio Takahashi, Tokyo Institute of Technology (Japan)
Tadao Onzawa, Tokyo Institute of Technology (Japan)

Published in SPIE Proceedings Vol. 4568:
Microrobotics and Microassembly III
Bradley J. Nelson; Jean-Marc Breguet, Editor(s)

© SPIE. Terms of Use
Back to Top