Share Email Print

Proceedings Paper

Detecting spatial and temporal dot patterns in noise
Author(s): Bruce Drum
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The visual system can be thought of as an image processor that first reduces the dynamic retinal image to a temporal succession of noisy but redundant arrays of retinal ganglion cell signals and then reconstructs from these signals a stable representation of the external world. The process by which this reconstruction takes place is still poorly understood. An obvious requirement, however, is the capability to reject the noise in the individual neural signals. I am investigating the visual system's noise rejection capabilities by determining how much noise must be added to dot patterns to reduce them to detection threshold. The stimuli are patches of nonrandom dots surrounded by dynamic random dots of the same mean luminance and contrast. The non randomness, or coherence, of the stimulus patterns is controlled by randomizing a known percentage of stimulus dots in each frame of the dynamic display. The stimulus patterns can be limited to either spatial or temporal information. In addition to coherence, the size, duration and retinal location of the stimulus can be varied, as well as the temporal frequency, dot size, contrast and mean luminance of the entire display. Coherence thresholds are generally elevated by any operation that reduced the number of ganglion cells responding to the stimulus, either by reducing the stimulus area or duration or by limiting the response to a subset of ganglion cells (e.g., the receptive field overlap or response redundancy factor can be reduced by preferentially stimulating only one functional ganglion cell type, or by testing glaucoma patients with partially destroyed ganglion cell layers). The visual system thus appears to reduce noise effects by integrating neural responses that are correlated in either space or time.

Paper Details

Date Published: 1 June 1991
PDF: 12 pages
Proc. SPIE 1453, Human Vision, Visual Processing, and Digital Display II, (1 June 1991); doi: 10.1117/12.44352
Show Author Affiliations
Bruce Drum, Wilmer Eye Institute/Johns Hopkins Univ. School of Medicine (United States)

Published in SPIE Proceedings Vol. 1453:
Human Vision, Visual Processing, and Digital Display II
Bernice E. Rogowitz; Michael H. Brill; Jan P. Allebach, Editor(s)

© SPIE. Terms of Use
Back to Top