Share Email Print

Proceedings Paper

Robust modular product family design
Author(s): Lan Jiang; Venkat Allada
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper presents a modified Taguchi methodology to improve the robustness of modular product families against changes in customer requirements. The general research questions posed in this paper are: (1) How to effectively design a product family (PF) that is robust enough to accommodate future customer requirements. (2) How far into the future should designers look to design a robust product family? An example of a simplified vacuum product family is used to illustrate our methodology. In the example, customer requirements are selected as signal factors; future changes of customer requirements are selected as noise factors; an index called quality characteristic (QC) is set to evaluate the product vacuum family; and the module instance matrix (M) is selected as control factor. Initially a relation between the objective function (QC) and the control factor (M) is established, and then the feasible M space is systemically explored using a simplex method to determine the optimum M and the corresponding QC values. Next, various noise levels at different time points are introduced into the system. For each noise level, the optimal values of M and QC are computed and plotted on a QC-chart. The tunable time period of the control factor (the module matrix, M) is computed using the QC-chart. The tunable time period represents the maximum time for which a given control factor can be used to satisfy current and future customer needs. Finally, a robustness index is used to break up the tunable time period into suitable time periods that designers should consider while designing product families.

Paper Details

Date Published: 3 October 2001
PDF: 12 pages
Proc. SPIE 4565, Intelligent Systems in Design and Manufacturing IV, (3 October 2001); doi: 10.1117/12.443116
Show Author Affiliations
Lan Jiang, Univ. of Missouri/Rolla (United States)
Venkat Allada, Univ. of Missouri/Rolla (United States)

Published in SPIE Proceedings Vol. 4565:
Intelligent Systems in Design and Manufacturing IV
Angappa Gunasekaran; Bhaskaran Gopalakrishnan, Editor(s)

© SPIE. Terms of Use
Back to Top