Share Email Print
cover

Proceedings Paper

Conduction properties of microscopic gold contact surfaces
Author(s): Joseph Tringe; Warren G. Wilson; Jack E. Houston
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Electroplated gold surfaces of the type used for MEMS switches were surveyed by atomic force microscopy (AFM) to define the surface topographical features, and by x-ray photoelectron spectroscopy (XPS) to determine the chemical composition of the contact surface. The gold surfaces were contacted with electrochemically sharpened gold and tungsten probes using an interface force microscope (IFM), capable of simultaneously measuring contact currents from 10 fA to 10 mA and forces ranging from 0.01 to 100 uN. Both attractive and repulsive forces were observed, and attractive forces on the probe tip were found to exist at significant distances (greater than 5 nm) from the gold surface. The radius of the probe tip is on the order of a micron, making it a useful model system for a single-asperity contact on an actual MEMS switch-contact surface. The results of these single-contact measurement events are compared with contact measurements made with MEMS switches of various sizes and actuation schemes to understand the origins of contact resistance and switch failure.

Paper Details

Date Published: 2 October 2001
PDF: 8 pages
Proc. SPIE 4558, Reliability, Testing, and Characterization of MEMS/MOEMS, (2 October 2001); doi: 10.1117/12.442997
Show Author Affiliations
Joseph Tringe, Air Force Research Lab. (United States)
Warren G. Wilson, Air Force Research Lab. (United States)
Jack E. Houston, Sandia National Labs. (United States)


Published in SPIE Proceedings Vol. 4558:
Reliability, Testing, and Characterization of MEMS/MOEMS
Rajeshuni Ramesham, Editor(s)

© SPIE. Terms of Use
Back to Top