Share Email Print

Proceedings Paper

Wafer dicing by laser-induced thermal shock process
Author(s): Kaidong D. Ye; Chengwu An; Ming Hui Hong; Yongfeng Lu
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this report, a new way of wafer dicing is carried out by laser induced thermal shock process. This system consists of the use of a Nd:YAG laser to heat up the wafer surface following by a cooling fluid along the scanned line. The temperature gradient created by the laser heating and the gas cooling will cause a micro-crack on the wafer surface along the scanned line and the resulting crack propagation finally separate the silicon wafer into two pieces. As there is no material loss and removal during the separation process, the wafer dicing line width can be as small as sub-micron. The cross section of the wafer is smooth comparing with other separation methods and a high separation speed of 70 mm/s is achieved.

Paper Details

Date Published: 28 September 2001
PDF: 9 pages
Proc. SPIE 4557, Micromachining and Microfabrication Process Technology VII, (28 September 2001); doi: 10.1117/12.442940
Show Author Affiliations
Kaidong D. Ye, Data Storage Institute (Singapore)
Chengwu An, Data Storage Institute (Singapore)
Ming Hui Hong, Data Storage Institute (Singapore)
Yongfeng Lu, National Univ. of Singapore (United States)

Published in SPIE Proceedings Vol. 4557:
Micromachining and Microfabrication Process Technology VII
Jean Michel Karam; John A. Yasaitis, Editor(s)

© SPIE. Terms of Use
Back to Top